Skip to content

Beam Element

Timoshenko beam theory accommodates shear deformation and rotational bending in thick beams and high-frequency situations.

LEA
Schematic of 2D Timoshenko beam

Degrees of Freedom

The 2D Timoshenko Beam, with three degrees of freedom (DOFs) at each node:

  • Translation (Dx): Displacement along the X-axis.
  • Translation (Dz): Displacement along the Z-axis.
  • Rotation (Ry): Rotation about the Y-axis.

The loads are specified in the direction of the DOFs:

  • Horizontal Force (Fx): Force applied along the X-axis.
  • Vertical Force (Fz): Force applied along the Z-axis.
  • Moment (My): Moment applied about the Y-axis.

Local Stiffness Matrix

The beam stiffness matrix in the local coordinates is given by:

Kl=(EAL00EAL00012EIyL3(1+φ)6EIyL2(1+φ)012EIyL3(1+φ)6EIyL2(1+φ)06EIyL2(1+φ)(4+φ)EIyL(1+φ)06EIyL2(1+φ)(2φ)EIyL(1+φ)EAL00EAL00012EIyL3(1+φ)6EIyL2(1+φ)012EIyL3(1+φ)6EIyL2(1+φ)06EIyL2(1+φ)(2φ)EIyL(1+φ)06EIyL2(1+φ)(4+φ)EIyL(1+φ))\mathbf{K_l} = \begin{pmatrix} \frac{EA}{L} & 0 & 0 & -\frac{EA}{L} & 0 & 0 & \\[2ex] 0 & \frac{12 EI_y}{ L^3 (1+\varphi)} & \frac{-6 EI_y}{L^2 (1+\varphi)} & 0 & \frac{-12 EI_y}{L^3 (1+\varphi)} & \frac{-6 EI_y}{L^2 (1+\varphi)} &\\[3ex] 0 & \frac{-6 EI_y}{L^2 (1+\varphi)} & \frac{(4 + \varphi) EI_y}{L (1+\varphi)} & 0 & \frac{6 EI_y}{L^2 (1+\varphi)} & \frac{(2 - \varphi) EI_y}{L (1+\varphi)} &\\[2ex] -\frac{EA}{L} & 0 & 0 & \frac{EA}{L} & 0 & 0 &\\[2ex] 0 & \frac{-12 EI_y}{L^3 (1+\varphi)} & \frac{6 EI_y}{L^2 (1+\varphi)} & 0 & \frac{12 EI_y}{ L^3 (1+\varphi)} & \frac{6 EI_y}{L^2 (1+\varphi)} &\\[3ex] 0 & \frac{-6 EI_y}{L^2 (1+\varphi)} & \frac{(2 - \varphi) EI_y}{L (1+\varphi)} & 0 & \frac{6 EI_y}{L^2 (1+\varphi)} & \frac{(4 + \varphi) EI_y}{L (1+\varphi)} \end{pmatrix}

where:

  • EE is the Young's modulus of the material
  • AA is the cross-sectional area of the beam
  • LL is the length of the beam
  • IyI_y is the second moment of area about the y-axis
  • φ\varphi is the shear correction factor

Transformation Matrix

The element transformation matrix, T\mathbf{T}, is used to transform the local stiffness matrix to the global coordinate system.

T=(cos(α)sin(α)0000sin(α)cos(α)0000001000000cos(α)sin(α)0000sin(α)cos(α)0000001)\mathbf{T} = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 & 0 & 0 & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & \cos(\alpha) & \sin(\alpha) & 0 \\ 0 & 0 & 0 & -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}

Global Stiffness Matrix

The global stiffness matrix, Kg\mathbf{K_g}, is obtained by multiplying the element transformation matrix, T\mathbf{T}, with the local stiffness matrix, Kl\mathbf{K_l}:

Kg=TTKlT\mathbf{K_g} = \mathbf{T}^\mathsf{T} \cdot \mathbf{K_l} \cdot \mathbf{T}